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The flow of non-Newtonian liquid polymers through fibrous reinforcements is a phenomenon which is
often encountered during polymer composites manufacturing. In a previous work, we have proposed
from a multiscale theoretical approach a method to model this phenomenon when the polymer can be
regarded as a generalised Newtonian fluid [Orgéas et al. J. Non-Newtonian Fluid Mech. 2007; 145]. In this
paper, the capability of the method is tested with power-law fluids flowing through deformed plain
weave fabrics. For that purpose, the flow problem is firstly analysed at the mesoscale from numerical
simulations performed on representative elementary volumes of the fabrics. The influences of both the
current deformation of the fabrics and the fluid rheology on the macroscopic flow law are emphasised.
Secondly, it is shown that the proposed method allows a nice fit of numerical results.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Understanding, gauging and controlling physical phenomena
occurring during the processing of fibre-reinforced polymer com-
posites is crucial to produce optimised structural or functional
components with such materials. Among these phenomena, (i)
the evolution of fibrous microstructures as well as (ii) the flow of
the liquid polymer through the fibrous reinforcements are still
not very well understood and require a deeper analysis.

(i) Whatever the considered fibrous reinforcements, i.e.
impregnated/dry short/long woven/non-woven networks of
fibres/fibre bundles, the evolutions of their microstructures
induced during the various stages of forming strongly affect
their rheology [1–3]. This also significantly changes the pos-
sible flow of the liquid polymers through the fibrous net-
works [4–9].

(ii) The considered polymer matrixes, i.e. polymer blends,
charged polymers or curing polymers, may exhibit complex
rheologies, far from that of the idealised Newtonian fluid
model. When non-Newtonian effects become pronounced,
significant deviations from the flow of a standard Newtonian
fluid through porous media are observed and cannot be
neglected [10–15]. In such situations, the well-known
ll rights reserved.

x: +33 4 76 82 70 43.
éas).
Darcy’s law is no longer relevant. Unfortunately, if the liter-
ature dealing with the flow of Newtonian fluid through
fibrous media is abundant, much less is published concern-
ing the flow of non-Newtonian fluids through anisotropic
fibrous media, even in the very simple case where liquid
polymers or polymer suspensions are assumed to behave,
as a first rough but reasonable approximation, as purely
non-linear viscous fluids. Consequently, resulting macro-
scopic models able to describe such macroscale flows are
scarce [13,15–18].

In this work, we propose a method to model the second phe-
nomenon at the macroscale, by investigating the impact of the evo-
lution of the fibrous microstructures, i.e. the first phenomenon, on
the macroscopic flow law. The method is based on a multiscale ap-
proach of which the theoretical background has been published in
a previous work [18]. For that purpose, the flow problem at the fi-
bre scale is first presented (Section 2). Theoretical results obtained
from the upscaling process are briefly recalled (Section 3). A meth-
od to build continuous macroscopic flow laws is presented (Section
4). It is based on mesoscale simulations which are carried out on
representative elementary volumes of fibrous microstructures. Its
capability is here tested with generalised Newtonian fluids, i.e.
power-law fluids, flowing through pre-sheared plain weaves (Sec-
tion 5). In particular, the influences of both the current deforma-
tion of the plain weaves and the fluid rheology on the
macroscopic flow law are emphasized.
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2. Fluid flow problem at the mesoscale

We consider the slow and isothermal flow of an incompress-
ible generalised Newtonian fluid through a rigid fibrous medium,
by assuming a no slip condition at fluid–solid interfaces C. The
fibrous medium, e.g. a textile reinforcement made up of continu-
ous fibre bundles, is seen as an assembly of a large number of
identical cells, called Representative Elementary Volume (REV),
whose typical size lREV is of the same order of magnitude as lc,
the characteristic thickness of sheared fluid at the heterogeneity
scale (here the fibre bundle scale), i.e. lREV ¼ OðlcÞ. lc is supposed
to be very small compared to the size Lc upon which macroscopic
pressure gradients occur. Hence, the scale separation parameter
e = lc/Lc is very small, i.e. e� 1. Within the REV of volume XREV,
the flowing fluid occupies a volume Xf, whereas fibre bundles
occupy a volume Xs. For the sake of simplicity, the flow within
them is ignored in this study. The stress tensor r of the consid-
ered flowing fluids is:

r ¼ �pdþ s with s ¼ 2gD; ð1Þ

where p is the incompressibility pressure, d the identity tensor and
where the extra stress s depends on both the shear viscosity g and
the strain rate tensor D ¼ ð$� v þ v � $Þ=2, v being the local fluid
velocity field. The shear viscosity g is assumed to be a function of
the microscopic equivalent shear strain rate _ceq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D : D
p

, i.e.
gð _ceqÞ. Many well-known rheological models belong to this fluid
category: Newtonian fluids, power-law fluids, Cross fluids, Car-
reau–Yasuda fluids, regularised versions of Bingham or Herschel–
Bulkley fluids... From the very simple Newtonian approximation,
the other cited models constitute a first step to better account for
the complex and non-Newtonian rheology of liquid polymers or
polymer suspensions during the processing of polymer composites:
they can capture the non-linear influence of strain rates on stress
levels required to induce the flow of these complex fluids at finite
strain or in steady state situations. Let us note that s can also be de-
fined as the gradient of a volumetric viscous dissipation potential
U:

s ¼ @U
@D
¼ @U
@ _ceq

@ _ceq

@D
¼ seq

@ _ceq

@D
¼ 2gD; ð2Þ

where the equivalent shear stress seq is defined as:

seq ¼
@U
@ _ceq

¼ g _ceq; ð3Þ

so that the volumetric mechanical local dissipation Pdis is expressed
as:

Pdis ¼ s : D ¼ seq _ceq: ð4Þ

This study is restricted to fluids which verify dseq=d _ceq > 0. This
assumption endows the so-defined dissipation potential U with
the convexity property. It is required to ensure the solution unicity
of the localisation problem (7) (see Section 3, [18]). For example, in
case of power-law fluids, for which g ¼ g0 _cn�1

eq (g0 being the positive
consistency and n the power-law exponent), the last restriction im-
poses n > 0.

Finally, let us point out that when a homogeneous permeation
experiment performed with a fibrous sample of length Lc is consid-
ered, the present fluid flow problem is driven by a balance between
a macroscopic pressure gradient of characteristic value Dpc/Lc and
viscous drag forces of characteristic value fc = sc/lc, sc being the
characteristic shear stresses induced by the local shearing of the
fluid at a charateristic shear rate vc/lc [18]:

Dpc

Lc
¼ O fcð Þ ¼ O

1
lc
sc

� �
¼ O

1
lc
gc

vc

lc

� �
with gc ¼ g

vc

lc

� �
: ð5Þ
3. Upscaling process: main results

The above local fluid flow problem was theoretically upscaled in
previous studies for Newtonian fluids [19], power-law fluids
[20,21], and more recently for generalised Newtonian fluids [18]
by using the homogenisation method with multiple scale asymp-
totic expansions [22]. We briefly recall here the main results de-
duced from these studies.

3.1. Macroscopic balance equations

The homogenisation process shows that for generalised Newto-
nian fluids, the mass and momentum balance equations of the
macroscopic equivalent continuum associated with the above local
physics are, respectively [18]:

$ � hvi ¼ 0;
$�p ¼ f hvi;g;microstructureð Þ;

�
ð6Þ

where $�p stands for the macroscopic pressure gradient, hvi is the
macroscopic velocity defined as the volume average of the first or-
der component �v of the velocity field v, and f is a macroscopic vol-
umetric viscous drag force depending on hvi, the shear viscosity g
and the fibrous microstructure.

3.2. First order localisation problem

In order to estimate the macroscopic flow law, i.e. the form of f,
the macroscopic velocity field hvi must be determined. hvi can be
obtained by determining the first order periodic velocity field �v
in a given REV, by solving the following localisation problem
resulting from the homogenisation process [18]:

$ � �v ¼ 0 in Xf ;

2$ � g _�ceq
� �

�D
� �

¼ $�pþ $dp in Xf ;

�v ¼ 0 onC;

8><
>: ð7Þ

where the macroscopic pressure gradient $�p acts as a constant and
given volume force in the whole REV, and dp is the first order peri-
odic fluctuations of the pressure field around �p.

3.3. Properties and forms of the macroscopic flow law

When the flowing fluid is Newtonian, i.e. when g = g0, it can be
shown that the macroscopic flow law reduces to the well-known
Darcy’s law [23,19]:

f ¼ �g0K�1 � hvi; ð8Þ

where K is the definite, positive and symmetric permeability ten-
sor. When considering a power-law fluid, the linear Darcy’s law
(8) is not valid any more. However, it can further be proved that
f is a homogeneous function of degree n of the average velocity
hvi [21]:

f nhvið Þ ¼ nnf hvið Þ; 8n 2 Rþ: ð9Þ

For other generalised Newtonian fluids, relations (8) and (9) are
no more satisfied. Nonetheless, it can be shown that the macro-
scopical drag force f is the gradient, with respect to hvi, of the vol-
ume averaged viscous dissipation hUi [18]:

f ¼ � @hUi
@hvi : ð10Þ

As shown by (2), the viscous dissipation potential U can be ex-
pressed at microscopic scale as a function of _ceq. Similarly, the mac-
roscopic dissipation potential hUi can be expressed as a function of
a macroscopic equivalent velocity veq, defined as a norm in the
velocity space and depending on hvi:
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f ¼ � @hUi
@veq

@veq

@hvi ¼ �feq
@veq

@hvi ; ð11Þ

where feq(veq) is the macroscopic equivalent drag force defined as

feq ¼
@hUi
@veq

: ð12Þ

Hence, the volume average mechanical dissipation hPdisi
reads:

hPdisi ¼ hs : Di ¼ hseq _ceqi ¼ �hvi � f ¼ feqveq: ð13Þ

By considering this latter equation and Eqs. (3), (4) and (12), it is
important to notice that seqð _ceqÞ and feq(veq) play similar roles at the
microscale and at the macroscale, respectively. Besides, (12), (13)
show that when it is plotted in the velocity space, a macroscopic
iso-dissipation (iso-hPdisi) surface is an iso-veq surface and also
an iso-potential (iso-hUi) surface.

Consequently, the macroscopic flow law is entirely defined if
relevant expressions of (i) feq(veq) and (ii) veq(hvi) are proposed:

(i) As suggested in [9], the characteristic velocitic vc involved in
(5) can be linked with the equivalent velocity veq by using
the following mass balance expression: vc = veq//c, where
/c may be expressed as the volume fraction of fluid effec-
tively involved in the flow resistance. The analysis of the
flow structure at mesoscale can give sense to this porosity.
Indeed, by considering nc, the number of fluid channels
(cross-section l2

c ) mainly contributing to the flow in a given
direction, SREV, the REV area which is projected on a plane
perpendicular to the given direction, a possible estimation
of /c is:

/c ¼ ncl2
c=SREV: ð14Þ

Please notice that nc and lc depend on the topology of the
considered fibrous reinforcement, but they also depend on
the topology of the fluid flow within it: they are estimated
from the solution �v of the localisation problem (7) (see
Section 4). Therefrom, the equivalent drag force feq can be
expressed as a function of veq by accounting for physical
arguments used to establish (5). In the case of a power-
law fluid, this yields:

feq ¼
g0

lc

veq

/clc

� �n

: ð15Þ

(ii) In case of orthotropic macroscopic flow laws, whose ortho-
tropy directions are noted eI, eII and eIII, veq only depends
on the velocity invariants VI,VII,VIII defined in (17). A
frame-independent expression can be obtained by using
the theory of representation of anisotropic tensor func-
tions [18,24]. In case of a power-law fluid, this form is:

f¼�g0

lc

veq

/clc

� �n 1
V I

@veq

@V I
MIþ

1
V II

@veq

@V II
MIIþ

1
V III

@veq

@V III
MIII

� �
� hvi ð16Þ

where the microsctructure tensors Mi and the velocity invari-
ants Vi are, respectively, defined as (i = I, II, III, no summation
on the indices i):

Mi ¼ ei � ei and Vi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hvi �Mi � hvi

p
: ð17Þ

For example, when the orthotropy reference frame (eI,eII,eIII)
corresponds to the current reference frame (e1,e2,e3), the Vi’s
correspond to jhviij. Various convex forms of veq(Vi) may be
proposed. That proposed in [18] is expressed as:

vm
eq ¼ vm

eqa þ vm
eqb ð18Þ

with
vma
eqa ¼ Vma

I þ
V II

A

� �ma

; veqb ¼
V III

B
and m ¼ mbV2

I þmcV2
II

V2
I þ V2

II

:

ð19Þ

Hence, veq = VI when the macroscopic flow is parallel with the
orthtropy direction eI. Likewise, as shown in Fig. 5d, the consti-
tutive parameters A and B characterise the anisotropy of iso-veq

surfaces along the principal axes eII and eIII. Lastly, the constitu-
tive parameters mi’s control the curvatures of these surfaces
[18]. They equal 2 for Newtonian fluids so that (16) reduces to
the Darcy’s law (8).
4. Method to build the macroscopic flow law

To summarise, from the knowledge of the shear viscosity g of
the flowing fluid, the orthotropic macroscopic flow law (16)–(19)
only requires seven additional constitutive parameters: lc,nc,A,B,-
ma,mb and mc, /c being a function of lc and nc (see (14)). The general
procedure to determine them consists in:

(i) Finding the symmetries of the flow - as shown for example in
[14], problem (7) is solved for a set of pressure gradients $�p
with identical norm and various orientations in order to look
for symmetries. The resulting pairs (f,hvi) are recorded. If the
flow law exhibits three orthogonal symmetry planes, this
allows to determine the microstructures vectors eI, eII and
eIII and corresponding microstructure tensors MI, MII and
MIII.

(ii) Analysing the flow along eI direction - as proposed in [9], a
micro-scale analysis of the flow problem (7) is performed
in order to estimate nc. From the knowledge of SREV, this
allows expressing /c as a function of lc only (see (14)). Then,
lc is determined from the macroscopic flow law (16)–(19),
which in this particular situation is expressed as:

� �

f ¼ � g0

/cl2
c

jhv Iij
/clc

n�1

hv IieI ð20Þ
(iii) Analysing the flow along eII and eIII directions - in these two
situations, the macroscopic flow law (16)–(19), respectively,
reduces to:

f ¼ �g0

/cA2l2
c

jhv IIij
/cAlc

� �n�1

hv IIieII and

f ¼ �g0

/cB2l2
c

jhv IIIij
/cBlc

� �n�1

hv IIIieIII ð21Þ

From these two relations, the constitutive parameters A and B
can be easily determined.

(iv) Building iso-dissipation surfaces - the method is similar to
step (i). However, the norms of the pressure gradients $�p
must be adjusted so that each pair (f,hvi) dissipates the same
mechanical power hPdisi0. When fluid viscosity is governed
by a power-law, this can be easily done from numerical sim-
ulations performed in step (i) by considering the homogene-
ity property (9) and the mean power given in (13) [15].
Indeed, a known flow pair (fa,hvia) dissipating hPdisia can
then be used in order to calculate a flow pair (hvi0, f0) dissi-
pating a given hPdisi0:

1

hvi0 ¼ nhvia and f0 ¼ nnfa with n ¼ hPdisi0
hPdisia

� �
nþ1

: ð22Þ

For other generalised Newtonian fluids, this rule can not be
applied and a simple iterative algorithm can, for example,
be implemented to gradually adapt the pressure gradient
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norm in order to generate a flow dissipating the targeted
mechanical mean power hPdisi0. In those cases, problem (7)
has to be solved for each tested pressure gradient.
(v) Fitting the form (18), (19) of veq to numerical iso-dissipation
surfaces obtained in step (iv) - this allows obtaining the three
remaining constitutive parameters ma,mb and mc.

5. Application to deformed textile reinforcements

The methodology described in the previous section is here ap-
plied to model the flow of a power-law fluid through woven fab-
rics. These types of flows may be typically encountered in the
RTM process or during the sheet forming of fibre-reinforced poly-
mer composite sheets. In this example, the RTM process is
adressed: the roles of both the shear pre-deformation of the dry
textile and the fluid rheology are emphasized.

5.1. Mesostructure

We consider a plain weave with identical warp and weft fibre
bundles. The non-deformed shape is defined by means of circle
arcs whose dimensions are given in Fig. 1. The analysis of the shear
0.8 mm

h

h
e H

2L

r

r

l

L

Cross-section of the considered plain weave and its corresponding dimen-
in the non-deformed configuration. Curvature radius r = 9.82 mm, fibre

width l = 3.2 mm, length of the fluid REV 2L = 8mm, fibre bundle thickness
mm, air-gap between layers 2h, air-gap on the lateral boundaries 2hb and

EV thickness H. When h = 0 mm, then hb � 0.18 mm and H � 0.74 mm. The
lines represent the periodic boundaries of the fluid REV.

Solid and fluid REV’s for the non-deformed configuration (a,b) and after a shear d
tion angles h and u.
pre-deformation of the plain weave was extensively studied in [2].
Its relevance has been recently demonstrated in [25]. Briefly, by
accounting for the periodicity of the considered textile, Finite Ele-
ment (FE) simulations were carried out on solid REV’s of the plain
weave (see Fig. 2a and c). Such simulations were performed
accounting for (i) large transformations, (ii) bundle–bundle con-
tacts and (iii) the transverse isotropy of fibre bundles, assumed
to behave like hypoelastic bodies. The reader is referred to [2,25]
for details about this analysis. As an example, Fig. 2c illustrates
the deformed shape of the solid REV of the plain weave shown in
Fig. 2a after an in-plane shear pre-deformation of 53�, i.e. far be-
yond the locking angle. From the as-deformed solid REV’s, associ-
ated fluid REV’s (see Fig. 2b and d) were built, in order to solve
the localisation problem (7). The method used to build fluid REV’s
from the solid REV’s is described in [9].

5.2. Numerical results and fit of the macroscopic flow law

For convenience, the reference frame (e1,e2, e3) has been here
aligned with the directions of the rhombus-REV diagonals and
the REV thickness (see Fig. 2b and d). Therefrom, a set of unit mac-
roscopic pressure gradients $�p with various orientation angles h, u
(see Fig. 2b) has been imposed to the fluid REV’s in order to com-
pute the velocity fields hvi (step (i) of Section 4). For each pressure
gradient, the localisation problem (7) has been solved with a mixed
pressure–velocity formulation of the FE method implemented in
Comsol Multiphysics [9,14,15,18].

Results showed that for the considered power-law fluids and for
the considered sheared configurations of the plain weave the mac-
roscopic flow law always displays at least three orthogonal sym-
metry planes, whose normal corresponds to e1, e2 and e3. Hence,
even if the considered non-deformed and deformed textiles do
not exhibit orthotropy and have a higher degree of anisotropy,
the macroscopic flow law displays orthotropy. Consequently, this
allows us using the orthotropic flow law ((16)–(19)) and to work
with the velocity invariants Vi’s.

Then, flows along the ei directions were analysed (step (ii) and
(iii) of Section 4) in order to dertemine nc, lc, A and B. As in [9], the
number of fluid channels along the e1 direction nc was estimated to
eformation with angle a of 53� (c, and d). Reprensentation of r�p as a function of the
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2. The evolutions of lc and /c, and those of A and B have been re-
ported as functions of the shear angle a in the graphs of Figs. 3a
and b) and 4a and b), respectively.

Therefrom, the computed pairs (f,hvi) have been adjusted with
(22) in order to dissipate a same given mechanical power
hPdisi ¼ 100 Wm�3 (step (iv) of Section 4). Results are illustrated
by the stars plotted in the four graphs of Fig. 5, which represent
numerical iso-dissipative points obtained for four different config-
urations, namely the non-sheared (a,b) and the 53�-sheared (c,d)
configurations, and for different fluids, namely a Newtonian fluid
with g0 = 1Pa s (a,c) and a power-law fluid with g0 = 1Pa sn and
n = 0.3 (b,d).

Lastly, the continuous surface (18), (19) was fitted to the
obtained iso-dissipative numerical points, in order to estimate
the mi’s (step (v) of Section 4). This was achieved with Mat-
lab by following the Nelder–Mead algorithm used for multidi-
mensional unconstrained non-linear minimization. Satisfying
results have been reached in the sense that the mean relative
error per numerical point is less than 5%, whatever the stud-
ied deformed configurations and the considered fluids. Corre-
sponding fitted surfaces are plotted in Fig. 5. The evolutions
of the as-determined mi’s with the shear angle are reported
in Fig. 6.
0
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Fig. 4. Parameters A = hvII i/hvIi (a) B = hvIIIi/hvIi (b) involved in (18), (19) for different sh
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5.3. Discussion

Whatever the considered (non)-deformed fibrous reinforce-
ment and considered fluid rheology (i.e. generalised Newtonian
fluids), results shown in Figs. 3, 5, 4, 6 together with those already
obtained in [18] first prove that the proposed method allows
obtaining a fairly relevant macroscopic flow law. In particular,
the continuous expression (18), (19) proposed for veq gives a nice
fit of numerical iso-dissipative points, as shown in Fig. 5.

Besides, these results also underline the strong and complex
coupling between the REV microstructure and the flowing fluid
rheology. More precisely, they bring up a first set of comments that
are valid both for Newtonian and power-law fluids:

� As already pointed out in previous studies dedicated to Newto-
nian fluids [4–9], shearing the woven fabric induces noticeable
changes of the macroscopic flow law. This is also the case for
power-law fluids. As shown in Figs. 3 and 4, constitutive param-
eters lc, /c, A and B display complex evolutions with the shearing
angle, and these evolutions are qualitatively similar for Newto-
nian and power-law fluids. Notice that these changes can also
be gauged from iso-dissipation surfaces plotted in Fig. 5. Indeed,
for the same dissipated power, iso-dissipation surfaces are
0
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ear angles of the woven fabric, for a Newtonian fluid (j) and for a power-law fluid



Fig. 5. Iso-dissipation surfaces (100 W/m3) in the equivalent velocity (veq) space for the non-deformed (a and b) and 53�-sheared (c and d) configurations. On the left graphs
(a and c) a Newtonian fluid (n = 1) is considered. On the left graphs (b and d) a power-law fluid with shear thinning rheology (n = 0.3) is considered. Numerical results (stars)
have been determined by solving the localisation problem (7) while the continuous surface is modelled by phenomenological Eqs. (18), (19). The parameters of the
continuous surfaces are depicted on Figs. 3, 4 and 6.
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approximately twice as small after a shearing angle of 53o,
showing that the flow is much more difficult in this case than
for the non-deformed case.

� Fig. 4 shows that (i) A and B are lower than 1 and (ii) a decrease
of A and B as a increases. This reveals that (i) the in-axis flow
becomes easier and easier as the flow direction goes from eIII,
eII and eI, respectively, and (ii) the intensity of the flow anisot-
ropy is increased with the shearing angle: for example, iso-dis-
sipation surfaces sketched in Fig. 5 are more stretched when
a = 53o than when a = 0o.

Likewise, current results also emphasise noticeable differences
between Newtonian and shear thinning power-law flows:

� The characteristic porosity /c and thickness of sheared fluid lc
are smaller for the shear thinning power-law fluid. The trend
observed for /c is entirely due to that observed for lc, as sug-
gested by (14): indeed, SREV is a purely geometrical parameter
and nc has here been found identical for Newtonian and
power-law fluids. The decrease of lc with the power-law expo-
nent n when 0 < n 6 1 is in turn something which is usually
admitted for shear thinning fluids. It is directly correlated with
the concentration of local shear stresses (and hence shear strain
rates) near fluid–solid interfaces C as n ? 0.

� Fig. 5 shows that whatever the shear angle and for the consid-
ered flow regimes, i.e. for which the intrinsic volume average
of the local shear rate _ceq is above 1 s�1, shear thinning flows
are easier to achieve than Newtonian ones. Indeed, for the same
and given dissipated mechanical power, velocities are approxi-
mately five to ten times as high for the shear thinning fluid. In
other words, by accounting for (6) and (20), pressure gradients
$�p ¼ �2:4� 10�1eI and $�p ¼ �10�2eI [MPa m�1] are required
to induce a velocity hvi = 10�3eI [m s�1] for the Newtonian and
power-law fluids, respectively.
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Fig. 6. Parameters ma (j), mb (�) and mc (N) involved in (18), (19) for different
shear angles of the woven fabric, for a Newtonian fluid and for a power-law fluid
with n = 0.3. These parameters are all equal to 2 for a newtonian fluid (�). They
have been used to plot continuous surfaces depicted in Fig. 5.
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� For the non-deformed plain weave, the macroscopic flow law
exhibits isotropy in the (eI,eII) plane, since the in-axis flows have
the same intensity (A = 1, see Fig. 4) and the curvature of the iso-
dissipation surface is constant (ma = 2, see Fig. 6). This is due to
the particular geometry of the plane weave in this configuration
(which is such that hvi = aeI when $�p ¼ eI and hvi = aeII when
$�p ¼ eII) and to the linearity of the macroscopic flow law (8).
Even if the in-axis flows still have the same intensity (A = 1,
see Fig. 4), such a planar isotropy is however broken for the
shear thinning fluid since the curvature of its iso-dissipation
surface varies (ma � 3, see Fig. 6): the macroscopic flow law here
exhibits tetratropy in the (eI,eII) plane. A similar loss of symme-
try has already been emphasized previously when studying the
transverse flow of power-law fluids though square arrays of par-
allel fibres with circular cross-sections [14]. Its impact on the
fluid flow is for instance illustrated in Fig. 7, where the direc-
tions of two imposed pressure gradients (u = 0�, h = 10� and
h = 45�) and of their two associated velocities are depicted rela-
tively to the iso-veq surface for the Newtonian flow (a) and for
Fig. 7. View in the (VI,VII) plane of iso-dissipation surfaces (100 W/m3) in the non-defor
Two differently oriented pressure gradients (red and green) are imposed with u = 0�, h =
(For interpretation of the references in color in this figure legend, the reader is referred
the shear thinning flow (b). In each case, the pressure gradient
direction (dashed line) is perpendicular to the iso-dissipation
surface, in accordance with the normality rule deduced from
(11). Likewise, in the Newtonian case, due to the in-plane isot-
ropy, the velocity (continuous line) is always aligned with the
imposed pressure gradient (Fig. 7a). This is still the case for
the power-law fluid when h = 45� (see Fig. 7b), h = 0� (see (20))
and h = 90� (see (21)a), since these directions belongs to the
symmetry planes of the flow law. Elsewhere, i.e. for other values
of h, this is no more valid. For example, as sketched in Fig. 7b, a
noticeable deviation of an angle k � 13� is observed between the
imposed pressure gradient and the resulting velocity when
h = 10�.

� Possible measures of the intensity of the orthotropy can be
extracted from (20), (21) by forming the following ratios:
j hv IIið$�p ¼ eIIÞ j = j hv Iið$�p ¼ eIÞ j¼ Aðnþ1Þ=n and j hv IIIið$�p ¼
eIIIÞ j = j hv Iið$�p ¼ eIÞ j¼ Bðnþ1Þ=n. The more these ratios differ
from 1, the higher the orthotropy intensity. For the non-
deformed plain weave, they are, respectively, equal to 1 and to
0.32 for the Newtonian fluid, whereas they are equal to 1 and
to 0.63 for the power-law fluid: the orthotropy intensity is much
more pronounced for the Newtonian fluid for this situation. This
trend is completely reversed and amplified when the shear
angle equal 53�. Indeed, the above ratios are then equal to
0.72 and to 0.05 for the Newtonian fluid, whereas they are equal
to 0.49 and to 0.01 for the power-law fluid.

6. Conclusions

The flow of non-Newtonian viscous polymers through textile
reinforcements is often encountered during polymer composites
processing. To better understand this phenomenon, flows of New-
tonian and power-law fluids through sheared plain weaves were
studied from mescocale numerical simulations. These simulations
were performed by using realistic REV’s of the considered textiles
[2,25], and by following guidelines provided the homogenisation
method with multiple scale asymptotic expansions [21,18].

Whatever the flowing fluid, the major role of the shear deforma-
tion of the textile reinforcement was emphasised: shearing the
plain weave leads to noticeable increase of the resistance as well
as the anisotropy of the macroscopic fluid flow. This should be
med configuration for a Newtonian fluid (a) and for a power-law fluid (n = 0.3) (b).
10� and h = 45� (dashed lines). Resulting velocities are depicted in continuous line.
to the web version of this article.)
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taken into account in macroscale simulations of polymer compos-
ites processing.

Besides, major differences were underlined depending on the
flowing fluid. As expected, the shear thinning power-law fluid of-
fers much less resistance than the Newtonian one, at high local
shear strain rates and for the same consistency. Moreover, it has
been shown that the anisotropy magnitude strongly depends on
the flowing fluid and is highly linked with the pre-shearing of
the fibrous network. Lastly, it was found that the macroscopic flow
of the shear thinning fluid could exhibit a higher degree of anisot-
ropy. The two last differences can induce noticeable changes on the
orientation of the macroscopic flow. These effects should also be
taken into account in macroscale simulations of polymer compos-
ites processing.

To do so, we have proposed a method to build the macroscopic
flow law for generalised Newtonian fluids through porous media
[18]. This method is based on the determination and the modelling
of iso-dissipation surfaces. In this work, its relevance was empha-
sised in case of power-law fluids flowing through deformed tex-
tiles, by using mesoscale simulations. It must be pointed out that
iso-dissipation surfaces could also be built from experimental data.
It is also important to notice that the proposed macroscopic per-
meation law could be implemented without major difficulties in
mold filling simulation software.
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